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Theorem la, surface Ss must be spherical. In the presence of friction. at point A of 
contact of surfaces Ss and Ss the theorem’s hypothesis (3) can obviously be satisfied 

only if the axis CZ’ passes constantly through point A. Consequently, the projections 
of the velocities of the geometric points B and A onto plane BXY must, by hypo- 

thesis, be equal, which does not obtain in general. Theorem 3a is proved. 
In conclusion we emphasize that the statements of Theorems la, 2a and 3a are valid 

when the relative velocities of the bodies at their points of contact equal zero; other- 

wise, the statements lose force. For example, under an appropriate choice of the moving 
axes the hypotheses of Theorem 3 are satisfied in the problem of the rolling of a body 
of arbitrary form over the absolutely smooth surface of a moving sphere [l]. 
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The Rayleigh theorem on the properties of the spectrum of a linear conservative 
mechanical system is generalized to embrace the gyroscopic systems, i. e. to the 
case in which the equations of motion contain, in addition to the kinetic and po- 
tential energy matrices, an arbitrary skew-symmetric matrix of gyroscopic forces. 

1, Line&r gyrorcopic ryrtem. We shall consider a linear gyroscopic system 

described by the following general expression: 

Aq”+I’q’+Cq=O, qERn (1. 1) 

where A is the kinetic energy matrix, C is the potential energy matrix, both A and 

I? being symmetric n x n matrices, and I? is a skew-symmetric matrix of the gyro- 
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scopic forces of the same dimension. The properties of the natural frequencies of the 
above system were investigated by Rayleigh in [l] for the case I? = 0 

Let I’ # 0. Following the Rayleigh case, we assume the kinetic and potential ener- 

gies of the system to be positive definite forms with respect to velocities and coordinates: 

(q’, Aq’) > 0 for q’ # 0 , and (q, Cq) > 0 for q # 0. It can be shown that for 
any matrix I’ the characteristic equation of the system (1.1) has pure imaginary roots, 

consequently its particular solution can be written in the form 

q = I& (1.2) 

Here h is a real number the modulus of which is called the natural frequency of the sys- 
tem. It also represents one of the roots of the equation 

det (- Ah2 + Xh + C) = 0 (1.3) 

The above equation has 2n real roots, and it is evident that if h, is a root of this equa- 
tion, so is --ho . Thus the system has exactly n natural frequencies. The vector 1 cor- 

responding to the particular root h represents a nontrivial solution of the linear algebraic 
system 

(-AA~+ irh+c)I=o (1.4) 
The complex solution of this system can be written in the form 1 = p + ir. Separat- 
ing in (1.4) the real and imaginary parts, we obtain 

cTa2 + GA- V)X z 0, x = ~01 {pl, . . ., pn, r,, . . ., r,)E Rzn (1.5) 

and here all three matrices T, G and V are symmetric. 

Besides the mechanical system (1. l), we can also consider a mechanical system of 
twice the dimension which is no longer gyroscopic, and the potential energy matrix of 
which is negative definite 

d a(r, 7-s.) 
dt as- + 

a (27, GS.) a w w = o 
as. - as 

(1.6) 

Seeking its solution in the form zeAf, we again arrive at Eqs.( 1.5). 

Some of the properties of the solutions of (1.5) are established by 
Lemma 1. Let A,, be a certain root of Eq. (1.3), and x+ a solution of system (1.5) 

corresponding to this root, Then a solution x-of the system (I. 5) exists for a = - A0 
such, that the following relations hold : 

1) (x+7 TX+) = (x-c_, 
2) (x+7 

TX_), b+, vx+> = (x_, vx_) 
Gz+) + (x-7 Gz_) = o 

Proof. We shall show that the vector 

x+ _+, 

where E is a unit matrix,satisfies all the above conditions. Let us substitute this expres- 
sion into (1.5) in which we set h = h,, and left multiply the result by the matrix E*. 
This yields 

(E*TE*L02 - E*GE*ho - V) z+ = 0, E* == 1~; _; 1 



It is easy to see that 
E+TE* = T, E*VE* = V, E*GE* = -G (1. Q-1 

This yields the equation for the vector zz +, which turns out to be an identity. Thus the 
expression for x_ given above is in fact a solution of (1.5) for li. = - h,. Let us check 

the property (1). By (1.7) we have (z_, TX_) = ‘z?*~+, TEAM+) = (r+, E* T_FQ+) = (.(.+, 
TX+) ; the property (2) is checked in a similar manner. 

2, CharrcteriItfc function. I_& usscalar multiply (1.5) by x 

(s, ~z)‘h~ + (z, Gx) A - (5, VJ) = 0, (2.1) 

Transferring the term containing (z, G’x) h to the right-hand side and squaring both 
sides, we obtain 

(z, Tx)*R2 - [2 (5, TX) (x, Vx) - (z, Gx)*l X + (z, ‘VX)~ = 0, (2.2) 

R = A2 

If 2 = 2, is a solution of (1.5) for L = A,,, then solving the quadratic equation (2.2) 

we obtain an expression for the square of the root, namely R = h,“. If, on the other 
hand, 2 in (2.2) is an arbitrary vector, then the relation defines the implicit function 
R (x). We shall call this function the characteristic function of the system (1. l), or of 

the system (1.6). 
Lemma 2. The solutions of the algebraic system, and only these solutions, represent 

the critical points of the function R (x). 

Proof. We differentiate the relation (2. 1) with respect to X, assuming that h = A (x) 

~*Tx+;,Gx-vx+ (x, Tx)h++(x,Gx) x=0 
1 

dh 
(2.3) 

We shall show that the expression appearing in (2.3) within the square brackets is not 
zero when z + 0. Let us assume the opposite. Then a value z = z0 # 0 can be found 

such, that 3, (x,,) = -I/, (x,,, Gr,) / (r,, TX,) 

Substituting this value of h (z,,) into (2. l), we obtain 

which is impossible since T and V are both positive definite. Consequently & / dz 

vanishes only for those x which are solutions of the system (1.5). On the other hand, 
from (2.1) we find that, by virtue of their positive definiteness T, v and a (z) # 0, if 
z + 0. Therefore dR / dx = 2hdh i dx becomes zero whenever dh I h does. 

Lemma 3. Function R (x) (every one of its branches) is amonotonously increasing 
function of the potential energy, i. e. if we have two mechanical systems with the same 
1’ and G and with V* and V such that (s, Vx) < (z, V*z) for any value of z, 

then X (x) ( R* (z). 
Proof. We introduce the notation (2, TX) = t, (5, Vz) = u, (2, Gx) -z g. From 

(2.2) we obtain R;= 2ru+?=r+g V/ga+4tv 
2tz 

(2.4) 

which on differentiating yields dR / du > 0 for x # 0, aS 4tv > 0. 

9. Chrrrcterirtic ,urfrcs. We shall assume that the following metric is 
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defined in Rsr’ in terms of the quadratic form (5, 7’s) 

11 .?J II = V/(G TX) 

We consider, in this space, a hypersurface 11 defined by the equation 

11 J: /I 4H (i) = 1 (3.1) 

Substituting R (z) from the above equation into (2.2), we obtain the following equa- 
tion for this surface: 

(t, Gz)~ - (5, VX)~ (5, Tz)~ + 2 (z, TX) (z, Vx) = 1 (3.2) 

Equation (3.2) determines a closed surface of the eighth order. A ray projected from 
the coordinate origin in any direction, intersects this surface at two points corresponding 

to the different signs in (2.4). 
Lemma 4. Vector .zO satisfying the system (1.5) of length 1 h, I-‘/z, where h, is 

the eigenvalue corresponding to this vector, belongs to n. 
Proof. Substituting 11 x0 11 into (3.1) and remembering that R (x0) = a02 for one of 

the branches, we obtain an identity. 

We shall call the length of this vector the principal semiaxis of the surface. 
In what follows, we shall distinguish between the two branches of the surface IT , de- 

noting the branch corresponding to the plus or minus sign in (2.4) by fl+ and 11 , res- 

pectively. We shall use the same notation for the branches of K (r) , namely H, (x) 
and H_ (5). 

Lemma 5. The surfaces II, and II_ have the same, common system of principal 
semiaxes. 

Proof. From (2.4) and Lemma 1 we obtain R+ (z+) = R_ (z-), R+ (z_) = R- (x+), 

and this implies that the linearly independent system of solutions (1.5) consisting of 2n 

vectors, can be divided into two subsystems 

x1’, . . ., Xn’, Xl)), . . ., xns (3.3) 

such that R+ (q’) = hi2 and R- (xi”) = Liz, which completes the proof. 
We shall assume that the eigenvalues corresponding to the system of vectors (3.3) 

introduced in Lemma 5, are distributed in the order of their increasing moduli: 

I %I < -** < 1 h, I. Let us denote the principal semiaxes by 

oi 1 11 Xi’ 1) Z: 11 Xi’ (1 = I hi I-“’ 
Clearly we have 

a, > a2 > . . . >, a, (3.4) 

Since each of the branches n+ and n_ has the same system of semiaxes (3.4), it will 
be sufficient to consider only one of these branches, e. g. n,. We shall show that the 
principal semiaxes of 11, have extremal properties. Let K2 (n-m+i) be a subspace 
stretched over the vectors zrn’: zmn, . . ., xn’, xnn the norm of which is equal to or 
less than am. 

Lemma 6. a, -= max x for ;r: E n, n R2 (n-m+l). 

Proof. Consider the mechanical system (1.6) with additional constraint S E 
~2 (n-rn+lj. The system is equivalent to a mechanical system with 2 (n - m + I) de- 
grees of freedom for which the forms (S’, TS’j, Is’, Gs’) and (S, VS) are eClUa1 to 

the bounds of the corresponding forms of the system without a constraint on R2(nm+1). 

Consequently the bound of the eigenfunction R (I) on R’tn-“‘+l) will be equal to the 
eigenfunction of the system with the constraint. Such an eigenfunction will haveexactly 
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2 (n - m + 1) critical points. On the other hand, the vectors forming the linear enve- 
lope of fpwrfl+1, will obviously be the eigenvectors for the bound of the eigenfunction 
on R2 (n-mi1) and, since there are 2 (IL - IIL t 1) of these vectors, they and only they 

will Satisfy the necessary conditions for the extremum of the function R (2) for I E 
R’t”-mtlJ. Moreover h,2 is the absolute minimum of the function R(Z) on ~j2(~-~+1), 
and from this it follows by virtue of (3.1) that a, is the absolute maximum of the norm 
of the radius vector of the surface II+ on R’(n-7n 1). 

Let us consider the intersection of the surface n+ by some subspace fiat” , and intro- 
duce the notation bm = min 11 x 11 for z E R2m n 11,. 

Lemma I. For any R2m: bm < a, and maxnzm bm = am. 
Proof. Let R2(n-m+1) be the subspace appearing in Lemma 6. Since the sum of 

the dimensions of R2m and R2cTL-m+1) is greater than 2n, the above subspaces intersect. 
Let Y E Rzrn n Rs(=-~~+i) n II+, then by Lemma 6 I/ z )I 6 a, ; on the other hand 

)I x II > b, since z E R2”‘, and this implies that b, < a,. It is obvious that maxRZm b,= 
drn since the upper edge is attained on the subspace which is a linear envelope of the 

vectors I~‘, xlfl, . . ., xm', xm". 

4. Throrrm on thr brhrvior of the eigrnfrequencter under v&- 
rying rigidity. Let two mechanical systems of the form (1.1) be given with the 
same matrices of the kinetic energy and gyrcscopic forces, with the potential energy 
matrices denoted by C and I?. We shall call a system more rigid if its potential ener- 

gy is greater: (q, C*q) > (q, Cq) for any q # 0. 
Theorem. When the rigidity of the system (1.1) in which A and C are positive 

definite and r is an arbitrary skew symmetric matrix, is increased, then all natural fre- 

quencies of the system can only increase. 
Proof. From the inequality (q, C*q) > (q, Cq) follows the inequality@, v*z) > 

(z, VX), and from this we have, by virtue of Lemma 3, K+ (x) < R+* (x) for all z # 
tJ By virtue of (3. l), this means that n+* lies completely within I7,. Let us consider 

the intersection of the surfaces n+ and II+* by the subspace R2”. ,Clearly bm > bm*, 
consequently max bm > max b,* . But max bm = a,, and max b,* = am*, 
therefore am > am *. Using the relation am = 1 A, j-‘/z, we find that 1 ?m 1 < 
/Am* ! forany m. 

6. Corollarier, 
Corollary 1. When I‘ = 0 , the above theorem becomes the Payleigh theorem. 

Corollary 2. We shall call a system the large-mass system if for any q’ # 0 its 
kinetic energy is larger: (q’, A*q ) > (q’, Aq’) , and we have the following theorem: 
when the mass of the system increases, all its natural frequencies can only decrease. 

To prove this theorem it is sufficient to show, similarly to Lemma 3, that R (5) de- 
creases monotonously for any 2 , with increasing kinetic energy. 

Corollary 3. The requirement of the positive definiteness of C can be replaced 

by the requirement of nonnegativeness: (q, Cq) > 0 for any 9. 
In fact, the theorem holds for the case when some of the eigenvalues of the matrix C 

are arbitrarily small. By virtue of the continuous dependence of the roots of the charac- 
teristic equation on its coefficients, the theorem holds also in the limit, i.e. in the case 
when some of the eigenvalues of the matrix C are zero. 
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For certain nonholonomic and holonomic mechanical systems we have obtained 
the existence conditions for the particular integral being a linear bundle of the 

Hamiltonian and the momenta. The conditions are simplified for a certainclass 

of holonomic systems, containing the well-known [1] case of the particular Jaco- 
bi integral. An example of the fulfillment of these conditions is a variant of the 
restricted problem of translation-rotational motion of a gyrostat in a Newtonian 
force field. 

1, We consider a mechanical system S with the Lagrangian L = T + U + N. 
The linear function N of generalized velocities is the Meyer potential [Z-4] ofcertain 
electromagnetic and gyroscopic forces. We separate the system S with the position co- 
ordinate vector y = (q, z,)* into subsystems s’ and S” with vectors x = (Xi)* 

and z = (z,)* 

i = 1, 2, . . ., 1; ?-= 1, 2, . . ., p; l<Z, l<p; dimy=Z+p=n 

We write the Lagrangian of system S as the sum 

L = Lz’ + L,’ + LzN + L,” + L* + Lo (1.1) 
LSJ’ = ‘/2Zij’(t, y)Xi’Xi’, Z,j’ = Zj;, IIZij'll>O (i, i=iv 2,. . ** 1) 

L1’ = zi’ (t, y)xi’, Lz” = y&.; (t, y) Zr’Zs’, I,,“= 1,; (r, s = 1, 2,. . .1 p 

L; = Z,(t, y) Zt’y L” = Zit(ty Y)Xi’Zt’* LIJ = L(j(tY y), I’ = ‘f Idt 

Here and below summation is carried out over like indices and the superscript zero sig- 
nifies the result of a substitution 

f” = f” (t, x, x’) = f (6 x, X0, r(t), y(t)) 
(z = 1 (t), z’ = dr / G?t = v (t)) 

We denote r (t), v (t) as the known motion of subsystem S”, for which the cylinder 
z = r (t), z’ = v (t) is an invariant set of motions of $. In particular, the motion 
r*, r.+_’ of subsystem S” possesses this property if system S has the particular invari- 
ants h, (s, F = 1,2, . . . p) 

h, (t, z) = 0, det 11 ah I dz,j # 0 (h, (t, r* (t)) zz 0) 

or if the motions of S’ have no effect on S”. 


